Log in

+34 977 759833sigef@urv.cat

FUZZY ECONOMIC REVIEW

ISSN (print) 1136-0593 · ISSN (online) 2445-4192

Volume 25, Number 2, 2020, special issue

Special Issue of the XX SIGEF Congress (Naples, Italy) entitled "Harnessing Complexity through Fuzzy Logic"

REPLY STRUCTURE AND PARTICIPATION IN ONLINE CONVERSATIONS ENABLED BY ARGUMENTATION PLATFORMS: A REAL WORLD EXPERIMENT OF COLLECTIVE DELIBERATION IN E-DEMOCRACY

Luca Iandoli. St John’s University, College of Professional Studies, New York, USA. E-mail: iandolil@stjohns.edu

Ivana Quinto. University of Naples Federico II, Department of Industrial Engineering, Naples, Italy. E-mail: ivana.quinto@unina.it,

Lorella Cannavacciuolo. University of Naples Federico II, Department of Industrial Engineering, Naples, Italy. E-mail: lorella.cannavacciuolo@unina.it

In this paper we report evidence from a collective deliberation experiment in which the supporters of a political party were asked to debate online about ways to reform the electoral law. We compared a forum with an argumentation platform, an online collaboration tool that supports the construction of a collective…
Read more...

USING POSSIBILISTIC MOMENTS AND BI-OBJECTIVE OPTIMIZATION METAHEURISTICS TO COMPUTE PESSIMISTIC AND OPTIMISTIC EFFICIENT PORTFOLIOS / FRONTIERS FOR FUZZY-VALUED RETURNS OF RISKY ASSETS

Valise Georgescu. University of Craiova (Romania). Department of Statistics and Informatics, Email: vasile_georgescu@edu.ucv.ro.com

Andreea-Mirabela Stefan. University of Craiova (Romania). Department of Statistics and Informatics, Email: stefan.andreea.h3a@student.ucv.ro

Most of existing portfolio selection models are based on a probabilistic approach combined with optimization techniques. The uncertainty is equated with randomness. However, there are many non-probabilistic factors that affect the financial markets and a recent literature has increasingly been interested in modeling the fuzziness of portfolios returns. In this…
Read more...

A COMPARATIVE CLUSTERING MODEL THAT CONSIDERS FALSE POSITIVES AND FALSE NEGATIVES IN SOME SOCIOECONOMIC APPLICATIONS

D.E. Urueta-Hinojosa. Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Ingeniería Eléctrica, Ciudad de México, México. E-mail: deurueta@xanum.uam.mx

P. Lara-Velázquez. Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Ingeniería Eléctrica, Ciudad de México, México. E-mail: plara@xanum.uam.mx

M.A. Gutiérrez-Andrade. Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Ingeniería Eléctrica, Ciudad de México, México. E-mail: gamma@xanum.uam.mx

S.G. De-los-Cobos-Silva. Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Ingeniería Eléctrica, Ciudad de México, México. E-mail: cobos@xanum.uam.mx

E.A. Rincón-García. Universidad Autónoma Metropolitana-Azcapotzalco, Departamento de Sistemas, Ciudad de México, México. E-mail: rigaeral@correo.azc.uam.mx

R.A. Mora-Gutiérrez. Universidad Autónoma Metropolitana-Azcapotzalco, Departamento de Sistemas, Ciudad de México, México. E-mail: mgra@correo.azc.uam.mx

Unsupervised learning enables classifier models to be built quickly and inexpensively in comparison with supervised approaches because the labeling task is eliminated. On the other hand, to assess the quality of a classifier, the only parameter to consider is usually accuracy, treating incorrect predictions like if they had the same…
Read more...

WELFARE SUBJECTIVE EVALUATION. APPLICATION TO HEALTH SYSTEM ACCESS

Luisa L. Lazzari. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires (IIEP - BAIRES). Ciudad de Buenos Aires, Argentina. E-mail: luisalazzari@gmail.com.

María José Fernandez. Universidad de Buenos Aires. Facultad de Ciencias Económicas. CONICET. (IIEP - BAIRES). Ciudad de Buenos Aires, Argentina. E-mail: mariajfernandez@economicas.uba.ar

Patricia Mouliá. Universidad de Buenos Aires. Facultad de Ciencias Económicas. CIMBAGE - IADCOM. Ciudad de Buenos Aires, Argentina. E-mail: pimoulia@hotmail.com

Subjective assessments of the quality of life are considered when measuring development. These measurements are built using population surveys where people are asked to define their situation on a qualitative scale. Information is obtained through simple surveys that capture subjective perceptions of access to certain goods. To formalize human ability…
Read more...

Log in or Sign up

Cron Job Starts